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ABSTRACT

Finite element modeling has been applied to study
deformation of living cells in Atomic Force Microscopy
(AFM) and particularly Recognition Force Microscopy
(RFM). The abstract mechanical problem of interest is
the response to RFM point loads of an incompressible
medium enclosed in a fluid membrane. Cells are soft sys-
tems, susceptible to large deformations in the course of
an RFM measurement. Often the local properties such
as receptor anchoring forces, the reason for the measure-
ment, are obscured by the response of the cell as a whole.
Modeling can deconvolute these effects. This facilitates
experimental efforts to have reproducible measurements
of mechanical and chemical properties at specific kinds
of receptor sites on the membrane of a living cell. In this
article we briefly review the RFM technique for cells and
the problems it poses, and then report on recent progress
in modeling the deformation of cells by a point load.

Keywords: finite element modeling, biological cell,
cell membrane, living cell, AFM

1 AFM AND LIVING CELLS

The current bioscience revolution has relied on the
introduction of new technology to characterize biological
systems. One of the current challenges is the develop-
ment of technology for characterization at the cellular
and sub-cellular level. This is needed for the direct study
of how genome information is expressed at the micro-
scopic level, for example. It could also prove useful in
presymptomatic detection of infection. Scanning Probe
Microscopy has been identified as a promising means
to characterize biological systems at scales of nanome-
ters to microns.1 Atomic Force Microscopy (AFM) and
its derivatives such as Recognition Force Microscopy
(RFM) are well suited to the characterization of bio-
logical systems [1]. AFM uses the deflection of tiny can-
tilevers in contact with the specimen to provide infor-
mation about the topography and elastic properties of
cells; RFM goes a step further, using molecules attached
to an AFM cantilever tip to study the binding at various
sites on the specimen. In particular, recent studies have

1Length units: 1 micron = 10−6 m.

measured the deflection of the AFM cantilever during
approach and retraction in order to find the unbinding
forces for various ligand-receptor pairs, such as biotin-
avidin [2], paired DNA bases [3], antibody-antigen com-
plexes [4] and cell recognition proteins [5]. This paved
the way for experiments using a single receptor molecule
bound to the AFM tip to map the location of ligands
bound to solid surfaces [6]. It is only now becoming
possible to use the techniques on living cells, and this
has been the aim of our group at Lawrence Livermore
National Laboratory [7].

One challenge with using RFM on living cells, as op-
posed to molecules fixed to a surface, is the fact that the
cell is not rigid. As force is applied to a receptor site, it is
not just the receptor site that is affected. The whole cell
deforms under the applied force. The measured force-
distance response is a convolution of the local, intrinsic
response of the receptor and the gross elastic response
of the cell. We have developed new computational tools,
and to some extent new models, to study the deforma-
tion of the cell and separate the two effects.

The modeling is based on a continuum level analysis
of the elastic deformation [8], implemented in a finite el-
ement model [9]. The model is unconventional because
membrane bending makes a major contribution to the
strain energy. The appearance of the membrane curva-
ture in the energy necessitates the use of finite elements
with shape functions whose first derivatives are continu-
ous everywhere; i.e. conforming C1 finite elements. The
computational model is discussed further below.

2 STRUCTURE OF THE CELL

The bovine sperm cell has been selected as the model
system for our experiments to develop the AFM and
RFM techniques on living cells. An AFM topographic
scan of the cell is shown in Fig. 1. The figure is a per-
spective view of a single sperm cell generated from an
AFM scan in which height is measured in tapping mode
as a function of x-y position [7].

The sperm cell was chosen for these experiments be-
cause of its well defined shape, because its structure
and composition have been well characterized and be-
cause it can be triggered to undergo a transformation
in which receptor sites become active on the exterior



Figure 1: Topography of a living bovine spermatazoum
immersed in buffered water at room temperature from
a force-volume scan by atomic force microscopy (AFM).
[7] Note the relatively well-defined shape. The head
may be seen to have different regions: the acrosomal
region in the front, the equatorial segment and the post-
acrosomal region near the tail.

membrane of the cell. The sperm cell has a relatively
simple anatomy [10]. It is well suited for its purpose,
to transport DNA for reproduction. Most of the head
is packed with chromatin (proteinated DNA). Roughly
half of the volume of the head is occupied with chro-
matin; the other half is water. The chromatin helps
define the cell shape, which is long and flat, roughly 10
microns long by 4 microns wide by 0.5 microns thick.
The cell membrane also contributes to the shape. The
membrane consists of three to five phospholipid bilayers,
depending on the site on the cell. The front of the head,
the acrosomal region, consists of three bilayers. The sec-
tion of the head near the tail, the post-acrosomal region,
consists of two bilayers. Differences in the membranes in
different regions of the head are clearly evident in Fig. 1.
Apart from the nucleus, the only organelles in the head
are mitochondria located near where the tail attaches.

Our goal is to use AFM and RFM to investigate
the properties of specific receptor sites on the cell mem-
brane. Currently, we can observe binding events on a
living cell in which the molecule attached to the AFM
tip binds to a receptor site, and then ultimately un-
binds as the AFM tip is retracted. These investigations
are continuing, but it is beyond the scope of this Article
to describe them in any detail. Nevertheless, it should
be clear that if the cell is deformed as a whole when a
particular site is probed, then the contribution of the
gross deformation must be subtracted in order to find
the intrinsic properties of the site. We have constructed
a mechanical model of the cell, as described below, to
allow us to calculate the gross cell deformation induced
by the AFM tip. Several kinds of AFM measurements
will be needed to parameterize and validate the model.

Figure 2: The model geometry of the indented cell and
the AFM tip. The length of the cell body and the width
of the AFM cantilever are both about 10 microns. The
radius of curvature of the membrane about the AFM tip
has been computed to be about 1 micron. [7]

One set of experiments that has been completed is
a measurement of the force vs. distance curves during
AFM indentation of the cell [7]. A model of this pro-
cess is shown in Fig. 2. These experiments were con-
ducted using a liquid cell AFM in which the sperm cell
was immersed in a buffered aqueous solution during the
measurements. During indentation and retraction, the
displacement of the piezotube that actuates the AFM
and the resulting deflection of the AFM cantilever were
measured. The force was determined from the cantilever
deflection using the known spring constant for the can-
tilever. The result was a measure of the elastic proper-
ties of the cell as a function of the depth of indentation.
In the shallow indentation regime the effective stiffness
was measured to be 0.03 N/m [7]. This value increased
for indentation beyond half of the cell’s thickness.

3 MODELING MECHANICAL
DEFORMATION OF CELLS

The load caused by retraction of the cantilever in
RFM or the indentation by an AFM tip causes defor-
mations of the cell that extend over distances that may
approach the size of the cell, and are large compared
to other length scales in the system such as the sepa-
ration between neighboring lipid molecules in the mem-
brane or the membrane thickness. In the case of a 0.3
micron indentation, the radius of curvature of the de-
formed membrane has been computed to be about 1
micron [7] (see Fig. 2). On this relatively large length
scale, continuum mechanics is appropriate to model the
deformation. Were we interested in the indentation of a
solid surface, conventional techniques such as Hertzian
theory [11] could be employed to extract the elastic con-
stants of the material. This has been employed in the



case of cells as well [12], but it has proven problem-
atic because of the large deformations and the finite size
of the cell [13]. Hertzian theory, for example, assumes
that the system undergoing indentation is a half-space,
a semi-infinite system bounded by a flat surface (before
indentation). This is not a good approximation for cells.
As noted above, the radius of curvature of the membrane
about the AFM tip is a substantial fraction of the cell’s
horizontal and vertical dimensions [7].

As discussed above, the response of the cell during
indentation shows an initial soft resistance followed by
a more rigid resistance, and this has been interpreted as
two distinct regimes of deformation. In the first regime,
the resistance is viewed as due to bending of the mem-
brane to accommodate the indentation and the incom-
pressibility of the interior; in the second regime, the re-
sistance has been proposed to arise from the compaction
of the chromatin during the deep indentation [7]. For
RFM applications, the shallow indentation regime is rel-
evant. With this guidance from experiment, we have
developed a continuum model for the cell deformation
[7]. The interior is modeled as an incompressible fluid
and the tip as a point force. The membrane is assumed
to be under-inflated so that the tension is zero. Even
so, it costs energy to deform the membrane because of
its bending rigidity. The strain energy of the membrane
is taken to be of the Canham-Helfrich form [14],

W =
κ

2

∫
dA (H −H0)2 (1)

where H is the mean curvature of the membrane, dA =√
gd2x is the area element with g the determinant of the

induced metric, and κ and H0 are material constants,
the bending rigidity and the intrinsic curvature, respec-
tively.

An interesting issue arose regarding the strain en-
ergy. Fluctuations of under-inflated membranes have
been studied extensively and modeled using the Canham-
Helfrich energy which gives the energy of the membrane
as a function only of its current shape [8]. Another ap-
proach has been to treat the membrane using Kirchhoff-
Love plate theory [15]–[17], as would be used to describe
the deformation of a steel plate. It describes the defor-
mation in comparison to a reference configuration. It
has recently been shown that the two formulations are
equivalent to the extent that they predict the same de-
formations provided the membrane remains in equilib-
rium with respect to tangential deformations [18]. The
formalism without a reference surface is simpler, so it is
the one we have implemented.

The curvature that enters the Canham-Helfrich en-
ergy (1) is given by a second-order partial derivative of
the displacement, so the equation of mechanical equi-
librium is a fourth-order partial differential equation.
It has been studied by several groups in the axisym-
metric case, where the equation reduces to a fourth-

Figure 3: A representation of the membrane energy
landscape: the contour surface of fixed reduced volume,
in Legendre space (see text). The contour is shaded ac-
cording to the bending energy, with white for the mini-
mum of energy (the equilibrium shape).

order, non-linear ordinary differential equation (ODE)
[17] or equivalently a set of coupled, non-linear first-
order ODE’s [19]. The point indenter produces a curva-
ture singularity that requires special treatment or reg-
ularization. Otherwise, the deformation is smooth and
can be computed using a C1 finite element technique.

A new formulation of finite elements based on sub-
division surfaces has been developed by Ortiz, Schröder
and coworkers recently for surfaces in three dimensions
[20]. These shape functions are just smooth enough to
ensure that the bending energy (1) is well defined and
converges rapidly. We have used the one-dimensional
analog of the subdivision elements, cubic splines, to cal-
culate the deformation of axisymmetric vesicles in equi-
librium and in indentation. A difficulty in the modeling
is the existence of local minima in the strain energy as a
function of membrane shape. Local minima give rise to
interesting physical effects such as the non-linear flicker
seen in some vesicle systems. In order to investigate
the energy landscape, we have projected the equilib-
rium shapes onto the space of symmetry-allowed Legen-
dre polynomials. Fig. 3 shows the isosurface of constant
reduced volume, Vred = 10.6 V/A3/2 = 0.78, colored
according to the energy. It shows that apart from mul-
tiple branches, the energy landscape is not particularly
complicated, and certainly not pathological.

4 BEYOND FINITE ELEMENTS

The interaction of the binding molecule with the re-
ceptor site is currently modeled as a point force. It
would be desirable to implement a more detailed model
of the binding, perhaps even modeling the receptor site
at the atomistic level. Concurrent multiscale modeling
may provide a means to do this and at the same time
model the larger-scale mechanics of the membrane and
cell deformation [21], [22]. The principle of multiscale



modeling is to use different models in order to describe
the physics of the system at different length and time
scales. It has been shown that atomistic models can be
coupled directly into continuum models such that they
run concurrently [21]. This provides a more detailed
description of the system where it is needed, while re-
taining the efficiency needed to model the entire system.

The RFM system would be an extremely interest-
ing application of concurrent multiscale modeling tech-
niques. The binding of an antibody or ligand to a re-
ceptor site could be modeled atomistically, along with
the portion of the membrane and solvation layers im-
mediately around the receptor site. This would then
be coupled into the continuum description of the rest
of the cell that has been described above. This would
allow a very precise study of binding effects that would
not need to neglect the contribution of the cell defor-
mation as a whole. To date, only conventional C0 finite
elements have been coupled to atomistics, so a concur-
rent methodology based on C1 elements appropriate for
membranes would require some development.

The use of RFM on biological cells poses some inter-
esting challenges for modeling. The unusual form of the
energy has required an unconventional computational
approach. So far the model has been used to study vesi-
cles as test cases, but it will soon be possible to apply it
to actual RFM data. This new window into the mechan-
ical and chemical properties of receptor sites promises
new discoveries that will deepen our understanding of
cell function.
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